
0

A Mamdani Type Fuzzy Logic Controller

Ion Iancu
University of Craiova

Romania

1. Introduction

The database of a rule-based system may contain imprecisions which appear in the description
of the rules given by the expert. Because such an inference can not be made by the methods
which use classical two valued logic or many valued logic, Zadeh in (Zadeh, 1975) and
Mamdani in (Mamdani, 1977) suggested an inference rule called "compositional rule of
inference". Using this inference rule, several methods for fuzzy reasoning were proposed.
Zadeh (Zadeh, 1979) extends the traditional Modus Ponens rule in order to work with fuzzy
sets, obtaining the Generalized Modus Ponens (GMP) rule.

An important part of fuzzy reasoning is represented by Fuzzy Logic Control (FLC), derived
from control theory based on mathematical models of the open-loop process to be controlled.
Fuzzy Logic Control has been successfully applied to a wide variety of practical problems:
control of warm water, robot, heat exchange, traffic junction, cement kiln, automobile speed,
automotive engineering, model car parking and turning, power system and nuclear reactor,
on-line shopping, washing machines, etc.

It points out that fuzzy control has been effectively used in the context of complex ill-defined
processes, especially those that can be controlled by a skilled human operator without the
knowledge of their underlying dynamics. In this sense, neural and adaptive fuzzy systems
has been compared to classical control methods by B. Kosko in (Kosko, 1992). There, it is
remarked that they are model-free estimators, i.e., they estimate a function without requiring
a mathematical description of how the output functionally depends on the input; they learn
from samples. However, some people criticized fuzzy control because the very fundamental
question "Why does a fuzzy rule-based system have such good performance for a wide variety
of practical problems?" remained unanswered. A first approach to answer this fundamental
question in a quantitative way was presented by Wang in (Wang, 1992) where he proved
that a particular class of FLC systems are universal approximators: they are capable of
approximating any real continuous function on a compact set to arbitrary accuracy. This class
is characterized by:

1) Gaussian membership functions,

2) Product fuzzy conjunction,

3) Product fuzzy implication,

4) Center of area defuzzification.
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Other approaches are due to Buckley (Buckley, 1992; 1993). He has proved that a modification
of Sugeno type fuzzy controllers gives universal approximators. Although both results are
very important, many real fuzzy logic controllers do not belong to these classes, because
other membership functions are used, other inference mechanisms are applied or other type
of rules are used. The question "What other types of fuzzy logic controllers are universal
approximators?" still remained unanswered. This problem were solved by Castro in (Castro,
1995) where he proved that a large number of classes of FLC systems are also universal
approximators.

The most popular FLC systems are: Mamdani, Tsukamoto, Sugeno and Larsen which work
with crisp data as inputs. An extension of the Mamdani model in order to work with interval
inputs is presented in (Liu et al., 2005) , where the fuzzy sets are represented by triangular
fuzzy numbers and the firing level of the conclusion is computed as the product of firing
levels from the antecedent. Other extensions and applications of the standard FLC systems
were proposed in (Iancu, 2009a;b; Iancu, Colhon & Dupac, 2010; Iancu, Constantinescu &
Colhon, 2010; Iancu & Popirlan, 2010).

The necessity to extend the fuzzy controllers to work with intervals or linguistic values as
inputs is given by many applications where precise values of the input data no interest or are
difficult to estimate. For example, in shopping applications the buyer is interested, rather, in a
product that is priced within certain limits or does not exceed a given value (Liu et al., 2005).
In other cases, the input values are much easier to express in fuzzy manner, for example,
in the problem of controlling the washing time using fuzzy logic control the degree of dirt
for the object to be washed is easily expressed by a linguistic value (Agarwal, 2007). These
examples will be used to show the working of the model proposed in order to expand the
Mamdani fuzzy logic controller. In this paper a FLC system with the following characteristics
is presented:

• the linguistic terms (or values) are represented by trapezoidal fuzzy numbers

• various implication operators are used to represent the rules

• the crisp control action of a rule is computed using Middle-of-Maxima method

• the overall crisp control action of an implication is computed by discrete Center-of-Gravity

• the overall crisp control action of the system is computed using an OWA (Ordered
Weighted Averaging) operator.

2. Preliminaries

Let U be a collection of objects denoted generically by {u}, which could be discrete or
continuous. U is called the universe of discourse and u represents the generic element of
U.

Definition 1. A fuzzy set F in the universe of discourse U is characterized by its membership function
µF : U → [0, 1]. The fuzzy set may be represented as a set of ordered pairs of a generic element u and
its grade of membership function: F = {(u, µF(u))/u ∈ U}.

Definition 2. A fuzzy number F in a continuous universe U, e. g., a real line, is a fuzzy set F in U
which is normal and convex, i. e.,

max
u∈U

µF(u) = 1 (normal)
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µF(λu1 + (1 − λ)u2) ≥ min{µF(u1), µF(u2)}, u1, u2 ∈ U, λ ∈ [0, 1] (convex)

Because the majority of practical applications work with trapezoidal or triangular
distributions and these representations are still a subject of various recent papers
((Grzegorzewski & Mrowka, 2007), (Nasseri, 2008), for instance) we will work with
membership functions represented by trapezoidal fuzzy numbers. Such a number N =
(m, m, α, β) is defined as

µN (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪
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⎩

0 f or x < m − α

x − m + α
α f or x ∈ [m − α, m]

1 f or x ∈ [m, m]

m + β − x
β

f or x ∈ [m, m + β]

0 f or x > m + β

Will be used fuzzy sets to represent linguistic variables. A linguistic variable can be regarded
either as a variable whose value is a fuzzy number or as a variable whose values are defined
in linguistic terms.

Definition 3. A linguistic variable V is characterized by: its name x, an universe U, a term set T(x),
a syntactic rule G for generating names of values of x, and a set of semantic rule M for associating with
each value its meaning.

For example, if speed of a car is interpreted as a linguistic variable, then its term set could be
T(x) = {slow, moderate, f ast, very slow, more or less f ast} where each term is characterized
by a fuzzy set in an universe of discourse U = [0, 100]. We might interpret: slow as "a speed
below about 40 mph", moderate as "speed close to 55 mph", fast as "a speed about 70 mph".

Definition 4. A function T : [0, 1]2 → [0, 1] is a t-norm iff it is commutative, associative,
non-decreasing and T(x, 1) = x ∀x ∈ [0, 1].

The most important t-norms are:

• Minimum: Tm(x, y) = min{x, y}

• Lukasiewicz: TL(x, y) = max{0, x + y − 1}

• Probabilistic (or Product): TP(x, y) = xy

• Weak: TW(x, y) =

{

min{x, y} i f max{x, y} = 1
0 otherwise.

Definition 5. A function S : [0, 1]2 → [0, 1] is a t-conorm iff it is commutative, associative,
non-decreasing and S(x, 0) = x ∀x ∈ [0, 1].

The basic t-conorms are

• Maximum: Sm(x, y) = max{x, y}

• Lukasiewicz: SL(x, y) = min{1, x + y}

• Probabilistic (or Product): SP(x, y) = x + y − xy
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• Strong: SS(x, y) =

{

max{x, y} i f min{x, y} = 1
1 otherwise.

The t-norms are used to compute the firing levels of the rules or as aggregation operators
and the t-conorms are used as aggregation operators. The rules are represented by fuzzy
implications. Let X and Y be two variables whose domains are U and V, respectively. A
causal link from X to Y is represented as a conditional possibility distribution ( (Zadeh, 1979),
(Zadeh, 1978)) πY/X which restricts the possible values of Y for a given value of X. For the
rule

IF X is A THEN Y is B

we have
∀u ∈ U, ∀v ∈ V, πY/X(v, u) = µA(u) → µB(v)

where → is an implication operator and µA and µB are the membership functions of the fuzzy
sets A and B, respectively.

Definition 6. An implication is a function I : [0, 1]2 → [0, 1] satisfying the following conditions for
all x, y, z ∈ [0, 1] :

I1: If x ≤ z then I(x, y) ≥ I(z, y)

I2: If y ≤ z then I(x, y) ≤ I(x, z)

I3: I(0, y) = 1 (falsity implies anything)

I4: I(x, 1) = 1 (anything implies tautology)

I5: I(1, 0) = 0 (Booleanity).

The following properties could be important in some applications:

I6: I(1, x) = x (tautology cannot justify anything)

I7: I(x, I(y, z)) = I(y, I(x, z)) (exchange principle)

I8: x ≤ y if and only if I(x, y) = 1 (implication defines ordering)

I9: I(x, 0) = N(x) is a strong negation

I10: I(x, y) ≥ y

I11: I(x, x) = 1 (identity principle)

I12: I(x, y) = I(N(y), N(x)), where N is a strong negation

I13: I is a continuous function.

The most important implications are:
Willmott: IW(x, y) = max{1 − x, min{x, y}}

Mamdani: IM(x, y) = min{x, y}

Rescher-Gaines: IRG(x, y) =

{

1 i f x ≤ y
0 otherwise

Kleene-Dienes: IKD(x, y) = max{1 − x, y}
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Brouwer-Gödel: IBG(x, y) =

{

1 i f x ≤ y
y otherwise

Goguen: IG(x, y) =

{

1 i f x ≤ y
y
x otherwise

Lukasiewicz: IL(x, y) = min{1 − x + y, 1}

Fodor: IF (x, y) =

{

1 i f x ≤ y
max{1 − x, y} otherwise

Reichenbach: IR(x, y) = 1 − x + xy.

Definition 7. An n-ary fuzzy relation is a fuzzy set in U1 × U2 × · · · × Un expressed as

RU1×···×Un
= {((u1, · · · , un), µR(u1, · · · , un))/(u1, · · · , un) ∈ U1 × · · · × Un}.

Definition 8. If R and S are fuzzy relations in U × V and V × W, respectively, then the sup-star
composition of R and S is a fuzzy relation denoted by R ◦ S and defined by

R ◦ S = {[(u, w), sup
v
(µR(u, v) ∗ µS(v, w))]/u ∈ U, v ∈ V, w ∈ W}

where ∗ can be any operator in the class of t-norms.

Fuzzy implication inference is based on the compositional rule of inference for approximate
reasoning suggested by Zadeh in (Zadeh, 1973).

Definition 9. If R is a fuzzy relation on U × V and x is a fuzzy set in U then the "sup-star
compositional rule of inference" asserts that the fuzzy set y in V induced by x is given by (Zadeh,
1971)

y = x ◦ R

where x ◦ R is the sup-star composition of x and R.

If the star represents the minimum operator then this definition reduces to Zadeh’s
compositional rule of inference (Zadeh, 1973).

The process of information aggregation appears in many applications related to the
development of intelligent systems: fuzzy logic controllers, neural networks, vision systems,
expert systems, multi-criteria decision aids. In (Yager, 1988) Yager introduced an aggregation
technique based on OWA operators.

Definition 10. An OWA operator of dimension n is a mapping F : Rn → R that has an associated n
vector w = (w1, w2, ...., wn)t such as

wi ∈ [0, 1], 1 ≤ i ≤ n,
n

∑
i=1

wi = 1.

The aggregation operator of the values {a1, a2, ..., an} is

F(a1, a2, ..., an) =
n

∑
j=1

wjbj

where bj is the j-th largest element from {a1, a2, ..., an}.

It is sufficiently to work with rules with a single conclusion because a rule with multiple
consequent can be treated as a set of such rules.
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3. Standard fuzzy logic controllers

3.1 Structure of a fuzzy logic controller

The seminal work by L.A. Zadeh (Zadeh, 1973) on fuzzy algorithms introduced the idea of
formulating the control algorithm by logical rules. An FLC consists of a set of rules of the
form

IF (a set o f conditions are satis f ied) THEN (a set o f consequences can be in f erred).

Since the antecedents and the consequents of these IF-THEN rules are associated with
fuzzy concepts (linguistic terms), they are often called fuzzy conditional statements. In FLC
terminology, a fuzzy control rule is a fuzzy conditional statement in which the antecedent is a
condition in its application domain and the consequent is a control action for the system under
control. The inputs of fuzzy rule-based systems should be given by fuzzy sets, and therefore,
we have to fuzzify the crisp inputs. Furthermore, the output of a fuzzy system is always a
fuzzy set, and therefore to get crisp value we have to defuzzify it. Fuzzy logic control systems
usually consist of four major parts: Fuzzification interface, Fuzzy rule base, Fuzzy inference
engine and Defuzzification interface, as is presented in the Figure 1.

Fig. 1. Fuzzy Logic Controller

The four components of a FLC are explained in the following (Lee, 1990).

The fuzzification interface involves the functions:

a) measures the values of inputs variables,

b) performs a scale mappings that transfers the range of values of inputs variables into
corresponding universes of discourse,

c) performs the function of fuzzyfication that converts input data into suitable linguistic
values which may be viewed as label of fuzzy sets.

The rule base comprises a knowledge of the application domain and the attendant control
goals. It consists of a "data base" and a "linguistic (fuzzy) control rule base":

a) the data base provides necessary definitions which are used to define linguistic control
rules and fuzzy data manipulation in a FLC
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b) the rule base characterizes the control goals and the control policy of the domain experts
by means of a set of linguistic control rules.

The fuzzy inference engine is the kernel of a FLC; it has the capability of simulating human
decision-making based of fuzzy concepts and of inferring fuzzy control actions employing
fuzzy implication and the rules of inference in fuzzy logic.

The defuzzification interface performs the following functions:

a) a scale mapping, which converts the range of values of output variables into corresponding
universes of discourse

b) defuzzification, which yields a non fuzzy control action from an inferred fuzzy control
action.

A fuzzification operator has the effect of transforming crisp data into fuzzy sets. In most of
the cases fuzzy singletons are used as fuzzifiers (according to Figure 2).

Fig. 2. Fuzzy singleton as fuzzifier

In other words,
f uzzi f ier(x0) = x0,

µx0
(x) =

{

1 f or x = x0

0 f or x 	= x0

where x0 is a crisp input value from a process.

The procedure used by Fuzzy Inference Engine in order to obtain a fuzzy output consists of
the following steps:

1. find the firing level of each rule,

2. find the output of each rule,

3. aggregate the individual rules outputs in order to obtain the overall system output.

The fuzzy control action C inferred from the fuzzy control system is transformed into a crisp
control action:

z0 = de f uzzi f ier(C)

where de f uzzi f ier is a defuzzification operator. The most used defuzzification operators, for
a discrete fuzzy set C having the universe of discourse V, are:
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• Center-of-Gravity:

z0 =

N

∑
j=1

zjµC(zj)

N

∑
j=1

µC(zj)

• Middle-of-Maxima: the defuzzified value is defined as mean of all values of the universe
of discourse, having maximal membership grades

z0 =
1

N1

N1

∑
j=1

zj, N1 ≤ N

• Max-Criterion: this method chooses an arbitrary value, from the set of maximizing
elements of C, i. e.

z0 ∈ {z/µC(z) = max
v∈V

µC(v)},

where Z = {z1, ..., zN} is a set of elements from the universe V.

Because several linguistic variables are involved in the antecedents and the conclusions of a
rule, the fuzzy system is of the type multi–input–multi–output. Further, the working with a
FLC for the case of a two-input-single-output system is explained. Such a system consists of a
set of rules

R1 : IF x is A1 AND y is B1 THEN z is C1

R2 : IF x is A2 AND y is B2 THEN z is C2

.................................................

Rn : IF x is An AND y is Bn THEN z is Cn

and a set of inputs
fact : x is x0 AND y is y0

where x and y are the process state variables, z is the control variable, Ai, Bi and Ci are
linguistic values of the linguistic variables x, y and z in the universes of discourse U, V and
W, respectively. Our task is to find a crisp control action z0 from the fuzzy rule base and from
the actual crisp inputs x0 and y0. A fuzzy control rule

Ri : IF x is Ai AND y is Bi THEN z is Ci

is implemented by a fuzzy implication Ii and is defined as

µIi
(u, v, w) = [µAi

(u) AND µBi
(v)] → µCi

(w) = T(µAi
(u), µBi

(v)) → µCi
(w)

where T is a t-norm used to model the logical connective AND. To infer the consequence
”z is C” from the set of rules and the facts, usually the compositional rule of inference is
applied; it gives

consequence = Agg{ f act ◦ R1, ..., f act ◦ Rn}.
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That is
µC = Agg{T(µx̄0 , µȳ0 ) ◦ R1, ..., T(µx̄0 , µȳ0 ) ◦ Rn}.

Taking into account that µx̄0 (u) = 0 for u 	= x0 and µȳ0 (v) = 0 for v 	= y0, the membership
function of C is given by

µC(w) = Agg{T(µA1
(x0), µB1

(y0)) → µC1
(w), ..., T(µAn

(x0), µBn
(y0)) → µCn

(w)}

for all w ∈ W.

The procedure used for obtaining the fuzzy output from a FLC system is

• the firing level of the i-th rule is determined by

T(µAi
(x0), µBi

(y0))

• the output C′
i of the i-th rule is given by

µC′
i
(w) = T(µAi

(x0), µBi
(y0)) → µCi

(w)

• the overall system output, C, is obtained from the individual rule outputs, by aggregation
operation:

µC(w) = Agg{µC′
1
(w), ..., µC′

n
(w)}

for all w ∈ W.

3.2 Mamdani fuzzy logic controller

The most commonly used fuzzy inference technique is the so-called Mamdani method
(Mamdani & Assilian, 1975) which was proposed, by Mamdani and Assilian, as the very first
attempt to control a steam engine and boiler combination by synthesizing a set of linguistic
control rules obtained from experienced human operators. Their work was inspired by an
equally influential publication by Zadeh (Zadeh, 1973). Interest in fuzzy control has continued
ever since, and the literature on the subject has grown rapidly. A survey of the field with
fairly extensive references may be found in (Lee, 1990) or, more recently, in (Sala et al., 2005).
In Mamdani’s model the fuzzy implication is modeled by Mamdani’s minimum operator, the
conjunction operator is min, the t-norm from compositional rule is min and for the aggregation
of the rules the max operator is used. In order to explain the working with this model of
FLC will be considered the example from (Rakic, 2010) where a simple two-input one-output
problem that includes three rules is examined:

Rule1 : IF x is A3 OR y is B1 THEN z is C1

Rule2 : IF x is A2 AND y is B2 THEN z is C2

Rule3 : IF x is A1 THEN z is C3.

Step 1: Fuzzification

The first step is to take the crisp inputs, x0 and y0, and determine the degree to which these
inputs belong to each of the appropriate fuzzy sets. According to Fig 3(a) one obtains

µA1
(x0) = 0.5, µA2

(x0) = 0.2, µB1
(y0) = 0.1, µB2

(y0) = 0.7
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Step 2: Rules evaluation

The fuzzified inputs are applied to the antecedents of the fuzzy rules. If a given fuzzy rule
has multiple antecedents, the fuzzy operator (AND or OR) is used to obtain a single number
that represents the result of the antecedent evaluation. To evaluate the disjunction of the rule
antecedents, one uses the OR fuzzy operation. Typically, the classical fuzzy operation union
is used :

µA∪B(x) = max{µA(x), µB(x)}.

Similarly, in order to evaluate the conjunction of the rule antecedents, the AND fuzzy
operation intersection is applied:

µA∩B(x) = min{µA(x), µB(x)}.

The result is given in the Figure 3(b).

Now the result of the antecedent evaluation can be applied to the membership function of the
consequent. The most common method is to cut the consequent membership function at the
level of the antecedent truth; this method is called clipping. Because top of the membership
function is sliced, the clipped fuzzy set loses some information. However, clipping is preferred
because it involves less complex and generates an aggregated output surface that is easier to
defuzzify. Another method, named scaling, offers a better approach for preserving the original
shape of the fuzzy set: the original membership function of the rule consequent is adjusted
by multiplying all its membership degrees by the truth value of the rule antecedent (see Fig.
3(c)).

Step 3: Aggregation of the rule outputs

The membership functions of all rule consequents previously clipped or scaled are combined
into a single fuzzy set (see Fig. 4(a)).

Step 4: Defuzzification

The most popular defuzzification method is the centroid technique. It finds a point
representing the center of gravity (COG) of the aggregated fuzzy set A, on the interval [a, b].
A reasonable estimate can be obtained by calculating it over a sample of points. According to
Fig. 4(b), in our case results

COG =
(0 + 10 + 20)× 0.1 + (30 + 40 + 50 + 60)× 0.2 + (70 + 80 + 90 + 100)× 0.5

0.1 + 0.1 + 0.1 + 0.2 + 0.2 + 0.2 + 0.2 + 0.5 + 0.5 + 0.5 + 0.5
= 67.4

3.3 Universal approximators

Using the Stone-Weierstrass theorem, Wang in (Wang, 1992) showed that fuzzy logic control
systems of the form

Ri : IF x is Ai AND y is Bi THEN z is Ci, i = 1, ..., n

with
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(a) Fuzzification

(b) Rules evaluation

(c) Clipping and scaling

Fig. 3. Mamdani fuzzy logic controller
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(a) Aggregation of the rule outputs

(b) Defuzzification

Fig. 4. Mamdani fuzzy logic controller

• Gaussian membership functions

µA(x) = exp[−
1

2
(

x − x0

σ
)2]

where x0 is the position of the peak relative to the universe and σ is the standard deviation

• Singleton fuzzifier
f uzzi f ier(x) = x̄

• Fuzzy product conjunction

µAi
(u) AND µBi

(v) = µAi
(u)µBi

(v)

• Larsen (fuzzy product) implication

[µAi
(u) AND µBi

(v)] → µCi
(w) = µAi

(u)µBi
(v)µCi

(w)

• Centroid deffuzification method

z =

n

∑
i=1

ciµAi
(x)µBi

(y)

n

∑
i=1

µAi
(x)µBi

(y)

where ci is the center of Ci, are universal approximators, i.e. they can approximate any
continuous function on a compact set to an arbitrary accuracy.
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More generally, Wang proved the following theorem

Theorem 1. For a given real-valued continuous function g on the compact set U and arbitrary ε > 0,
there exists a fuzzy logic control system with output function f such that

sup
x∈U

‖g(x)− f (x)‖ ≤ ε.

Castro in (Castro, 1995) showed that Mamdani fuzzy logic controllers

Ri : IF x is Ai AND y is Bi THEN z is Ci, i = 1, ..., n

with

• Symmetric triangular membership functions

µA(x) =

{

1 −
x − a

α
i f |x − a| ≤ α

0 otherwise

• Singleton fuzzifier
f uzzi f ier(x0) = x̄0

• Minimum norm fuzzy conjunction

µAi
(u) AND µBi

(v) = min{µAi
(u), µBi

(v)}

• Minimum-norm fuzzy implication

[µAi
(u) AND µBi

(v)] → µCi
(w) = min{µAi

(u), µBi
(v), µCi

(w)}

• Maximum t-conorm rule aggregation

Agg{R1,R2, ...,Rn} = max{R1,R2, ...,Rn}

• Centroid defuzzification method

z =

n

∑
i=1

cimin{µAi
(x), µBi

(y)}

n

∑
i=1

min{µAi
(x), µBi

(y)}

where ci is the center of Ci, are universal approximators.

More generally, Castro (Castro, 1995) studied the following problem:

Given a type of FLC, (i.e. a fuzzification method, a fuzzy inference method, a defuzzification method,
and a class of fuzzy rules, are fixed), an arbitrary continuous real valued function f on a compact
U ⊂ Rn, and a certain ε > 0 , is it possible to find a set of fuzzy rules such that the associated fuzzy
controller approximates f to level ε?

The main result obtained by Castro is that the approximation is possible for almost any type
of fuzzy logic controller.
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4. Mamdani FLC with different inputs and implications

Further, the standard Mamdani FLC system will be extended to work as inputs with crisp
data, intervals and linguistic terms and with various implications to represent the rules. A
rule is characterized by

• a set of linguistic variables A, having as domain an interval IA = [aA, bA]

• nA linguistic values A1, A2, ..., AnA for each linguistic variable A

• the membership function for each value Ai, denoted as µ0
Ai
(x) where i ∈ {1, 2, ..., nA} and

x ∈ IA.

The fuzzy inference process is performed in the steps presented in the following subsections.

4.1 Fuzzification

A fuzzification operator transforms a crisp data or an interval into a fuzzy set. For instance,
x0 ∈ U is fuzzified into x0 according with the relation:

µx0
(x) =

{

1 i f x = x0

0 otherwise

and an interval input [a, b] is fuzzified into

µ[a,b](x) =

{

1 i f x ∈ [a, b]
0 otherwise

4.2 Firing levels

The firing level of a linguistic variable Ai, which appears in the premise of a rule, depends of
the input data.

• For a crisp value x0 it is µ0
Ai
(x0).

If the input is an interval or a linguistic term then the firing level can be computed in various
forms.

A) based on "intersection"

• for an input interval [a, b] it is given by:

µAi
= max{min{µ0

Ai
(x), µ[a,b](x)}|x ∈ [a, b]}.

• for a linguistic input value A′
i it is

µAi
= max{min{µ0

Ai
(x), µA′

i
(x)}|x ∈ IA}.

B) based on "areas ratio"
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• for an input interval [a, b] it is given by the area defined by intersection µ0
Ai

∩ µ[a,b] divided

by area defined by µ0
Ai

µAi
=

∫ b
a min{µ0

Ai
(x), µ[a,b](x)}dx

∫ b
a µ0

Ai
(x)dx

• for a linguistic input value A′
i it is computed as in the previous case

µAi
=

∫ b
a min{µ0

Ai
(x), µA′

i
(x)}dx

∫ b
a µ0

Ai
(x)dx

It is obvious that, any t-norm T can be used instead of min and its dual t-conorm S instead
of max in the previous formulas.

4.3 Fuzzy inference

The fuzzy control rules are of the form

Ri : IF X1 is A1
i AND ... AND Xr is Ar

i THEN Y is Ci

where the variables Xj, j ∈ {1, 2, ..., r}, and Y have the domains Uj and V, respectively. The
firing levels of the rules, denoted by {αi}, are computed by

αi = T(α1
i , ..., αr

i )

where T is a t-norm and α
j
i is the firing level for A

j
i , j ∈ {1, 2, ..., r}. The causal link from

X1, ..., Xr to Y is represented using an implication operator I. It results that the conclusion C′
i

inferred from the rule Ri is
µC′

i
(v) = I(αi, µCi

(v)), ∀v ∈ V.

The formula
µC′ (v) = I(α, µC(v))

gives the following results, depending on the implication I:

Willmott : µC′ (v) = IW(α, µC(v)) = max{1 − α, min(α, µC(v))}

Mamdani: µC′ (v) = IM(α, µC(v)) = min{α, µC(v)}

Rescher-Gaines: µC′ (v) = IRG(α, µC(v)) =

{

1 i f α ≤ µC(v)
0 otherwise

Kleene-Dienes: µC′ (v) = IKD(α, µC(v)) = max{1 − α, µC(v)}

Brouwer-Gödel: µC′ (v) = IBG(α, µC(v)) =

{

1 i f α ≤ µC(v)
µC(v) otherwise

Goguen: µC′ (v) = IG(α, µC(v)) =

{

1 i f α ≤ µC(v)
µC(v)

α otherwise

Lukasiewicz: µC′ (v) = IL(α, µC(v)) = min{1 − α + µC(v), 1}

Fodor: µC′ (v) = IF(α, µC(v)) =

{

1 i f α ≤ µC(v)
max{1 − α, µC(v)} otherwise

Reichenbach: µC′ (v) = IR(α, µC(v)) = 1 − α + αµC(v)
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(a) Willmott implication (b) Willmott implication

(c) Mamdani implication (d) Rescher-Gaines implication

(e) Kleene-Dienes implication (f) Brouwer-Gödel implication

(g) Goguen implication (h) Lukasiewicz implication

(i) Fodor implication (j) Fodor implication

(k) Reichenbach implication

Fig. 5. Conclusions obtained with different implications
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4.4 Defuzzification

The fuzzy output C′
i of the rule Ri is transformed into a crisp output zi using the

Middle-of-Maxima operator. The crisp value z0 associated to a conclusion C′ inferred from
a rule having the firing level α and the conclusion C represented by the fuzzy number
(mC, mC, αC, βC) is:

• z0 =
mC + mC

2 for implication I ∈ {IR, IKD}

• z0 =
mC + mC + (1 − α)(βC − αC)

2 for I ∈ {IM, IRG, IBG, IG, IL, IF} or (I = IW , α ≥ 0.5)

• z0 = aV + bV
2 i f I = IW , α < 0.5 and V = [aV , bV ].

In the last case, in order to remain inside the support of C, one can choose a value according
to Max-Criterion; for instance

z0 =
mC + mC + α(βC − αC)

2
.

The overall crisp control action is computed by the discrete Center-of-Gravity method as
follows. If the number of fired rules is N then the final control action is:

z0 = (
N

∑
i=1

αizi)/
N

∑
i=1

αi

where αi is the firing level and zi is the crisp output of the i-th rule, i = 1, N.

Finally, the results obtained with various implication operators are combined in order to
obtain the overall output of the system. For this reason, the "strength" λ(I) of an implication
I is used:

λ(I) = N(I)/13

where N(I) is the number of properties (from the list I1 to I13) verified by the implication
I (Iancu, 2009a). If the implications are considered in the order presented in the previous
section, then according with the Definition 10, one obtains

w1 = λ(IW), w2 = λ(IM), ..., w9 = λ(IR)

a1 = z0(IW), a2 = z0(IM), ..., a9 = z0(IR)

and the overall crisp action of the system is computed as

z0 =
9

∑
j=1

wjbj

where bj is the j-th largest element of {z0(IW), z0(IM), . . . , z0(IF), z0(IR)}.
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5. Applications

In order to show how the proposed system works, two examples will be presented. First
example (Iancu, 2009b) is inspired from (Liu et al., 2005). A person is interested to buy a
computer using on-line shopping. For this, the customer can make selections on the price and
quality of computers. For the price of computers, different intervals are given for customers
to choose from, for example, 0-200 EUR, 400-600 EUR, etc. For the quality of computers, five
options are offered to the customers, namely Poor, Below Average, Average, Above Average,
and Good. After customers make those selections, the satisfaction score for that selected
computer is computed based on the fuzzy inference system described in the following. If
customers are not satisfied with the satisfaction score, they can go back and make selections
again. Therefore, this system will help customers to make decisions. In the next example
the system works with two inputs and one output. The input variables are quality (Q) and
price (P); the output variable is satis f action score (S). The fuzzy rule base consist of

R1: IF Q is Poor AND P is Low THEN S is Middle

R2: IF Q is Poor AND P is Middle THEN S is Low

R3: IF Q is Poor AND P is High THEN S is Very Low

R4: IF Q is Average AND P is Low THEN S is High

R5: IF Q is Average AND P is Middle THEN S is Middle

R6: IF Q is Average AND P is High THEN S is Low

R7: IF Q is Good AND P is Low THEN S is Very High

R8: IF Q is Good AND P is Middle THEN S is High

R9: IF Q is Good AND P is High THEN S is Middle

There are three linguistic values for the variable price:

{Low, Middle, High}

and five linguistic values for the variable quality:

{Poor, Below Average, Average, Above Average, Good}.

The universes of discourse are [0, 800] for price and [0, 10] for quality. The membership
functions corresponding to the linguistic values are represented by the following trapezoidal
fuzzy numbers:

Low = (0, 100, 0, 200)

Middle = (300, 500, 100, 100)

High = (700, 800, 200, 0)

Poor = (0, 1, 0, 2)
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Below Average = (2, 3, 1, 1)

Average = (4, 6, 2, 2)

Above Average = (7, 8, 1, 1)

Good = (9, 10, 2, 0).

The satisfaction score has following linguistic values:

{Very Low, Low, Middle, High, Very High}

represented, in the universe [0, 10], by the following membership functions:

Very Low = (0, 1, 0, 1)

Low = (2, 3, 1, 1.5)

Middle = (4, 6, 1, 1)

High = (7, 8, 1, 2)

Very High = (9, 10, 1, 0).

A person is interested to buy a computer with price = 400-600 EUR and quality =
AboveAverage. The positive firing levels (based on intersection) corresponding to the
linguistic values of the input variable price are

µMiddle = 1, µHigh = 0.5

and the positive firing levels corresponding to the linguistic values of the input variable quality
are:

µAverage = 2/3, µGood = 2/3.

The fired rules and their firing levels, computed with t-norm Product, are:

R5 with firing level α5 = 2/3,

R6 with firing level α6 = 1/3,

R8 with firing level α8 = 2/3 and

R9 with firing level α9 = 1/3.

Working with IL implication, the fired rules give the following crisp values as output:

z5 = 5, z6 = 8/3, z8 = 23/3, z9 = 5;

the overall crisp control action for IL is

z0(IL) = 5.5

Working with IR implication, the fired rules give the following crisp values as output:

z5 = 5, z6 = 2.5, z8 = 7.5, z9 = 5;
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(a) The membership function of the variable price

(b) The membership function of the variable quality

(c) The membership function of the variable satisfaction score

Fig. 6. Membership functions for the input and output variables
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its overall crisp action is
z0(IR) = 5.416.

Because λ(IR) = 11/13 and λ(IL) = 1, the overall crisp action given by system is

z0 = 5.4615

The standard Mamdani model applied for this example gives the following results:

• the firing levels are: α5 = 2/3, α6 = 0.5, α8 = 2/3, α9 = 0.5

• the crisp rules outputs are: z5 = 5, z6 = 5.25/2, z8 = 23/3, z9 = 5

• the overall crisp action is: z0 = 23/3 = 7.66

If the Center-of-Gravity method (instead of maximum operator) is used to compute the overall
crisp action then z0 = 5.253

One observes an important difference between these two results and also between these
results and those given by our method. An explanation consists in the small value of
the "strength" of Mamdani’s implication in comparison with the values associated with
Reichenbach and Lukasiewicz implications; the strength of an implication is a measure
of its quality. From different implications, different results will be obtained if separately
implications will be used. The proposed system offers a possibility to avoid this difficulty,
by aggregation operation which achieves a "mediation" between the results given by various
implications.

Another application that uses this type of controller is presented in (Iancu, 2009b) concerning
washing machines (Agarwal, 2007). When one uses a washing machine, the person generally
select the length of washing time based on the amount of clothes he/she wish to wash and the
type and degree of dirt cloths have. To automate this process, one uses sensors to detect these
parameters and the washing time is then determined from this data. Unfortunately, there is no
easy way to formulate a precise mathematical relationship between volume of clothes and dirt
and the length of washing time required. Because the input/output relationship is not clear,
the design of a washing machine controller can be made using fuzzy logic. A fuzzy logic
controller gives the correct washing time even though a precise model of the input/output
relationship is not available.

The problem analyzed in this example has been simplified by using only two inputs and one
output. The input variables are degree-of-dirt (DD) and type-of-dirt (TD); the output variable is
washing-time (WT). The fuzzy rule-base consist of:

R1: IF DD is Large AND TD is Greasy THEN WT is VeryLong

R2: IF DD is Medium AND TD is Greasy THEN WT is Long

R3: IF DD is Small AND TD is Greasy THEN WT is Long

R4: IF DD is Large AND TD is Medium THEN WT is Long

R5: IF DD is Medium AND TD is Medium THEN WT is Medium

R6: IF DD is Small AND TD is Medium THEN WT is Medium

345A Mamdani Type Fuzzy Logic Controller

www.intechopen.com



22 Will-be-set-by-IN-TECH

R7: IF DD is Large AND TD is NotGreasy THEN WT is Medium

R8: IF DD is Medium AND TD is NotGreasy THEN WT is Short

R9: IF DD is Small AND TD is NotGreasy THEN WT is VeryShort

There are three linguistic values for the variable degree-of-dirt:

{Small, Medium, Large}

and five linguistic values for the variable type-of-dirt:

{VeryNotGreasy, NotGreasy, Medium, Greasy, VeryGreasy}

having the same universe of discourse: [0, 100]. The membership functions corresponding to
the linguistic values are represented by the following trapezoidal fuzzy numbers:

Small = (0, 20, 0, 20)

Medium = (40, 60, 20, 20)

Large = (80, 100, 20, 0)

VeryNotGreasy = (0, 10, 0, 20)

NotGreasy = (20, 30, 10, 10)

Medium = (40, 60, 20, 20)

Greasy = (70, 80, 10, 10)

VeryGreasy = (90, 100, 20, 0).

The washing-time has following linguistic values

{VeryShort, Short, Medium, Long, VeryLong, High}

represented in the universe [0, 60] by the membership functions:

VeryShort = (0, 5, 0, 5)

Short = (10, 15, 10, 5)

Medium = (20, 30, 5, 5)

Long = (35, 50, 5, 10)

VeryLong = (50, 60, 10, 0).

A person is interested to wash some clothes with the degree-of-dirt between 60 and 70 and
type-of-dirt is VeryGreasy. Working in the same conditions as in the previous example, but
using "areas ratio" instead of "intersection" in order to compute the firing levels, one obtains
the following results. The positive firing levels corresponding to the linguistic values of the
input variable degree-of-dirt are
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(a) The membership function of the variable
degree-of-dirt

(b) The membership function of the variable
type-of-dirt

(c) The membership function of the variable
washing-time

Fig. 7. Membership functions for the input and output variables
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µMedium = 0.1875, µLarge = 0.0833

and the positive firing levels corresponding to the linguistic values of the input variable
type-of-dirt are:

µMedium = 0.0312, µGreasy = 1/3.

The fired rules and their firing levels, computed with t-norm Product, are:

R1 with firing level α1 = 0.0277,

R2 with firing level α2 = 0.0625,

R4 with firing level α4 = 0.0026 and

R5 with firing level α5 = 0.0058.

Working with IL implication, the fired rules give the following crisp values as output:

z1 = 50.138, z2 = 44.843, z4 = 44.993, z5 = 25

and the overall crisp control action for IL is

z0(IL) = 45.152

Working with IR implication, the fired rules give the following crisp values as output:

z1 = 55, z2 = 42.5, z4 = 42.5, z5 = 25

and its overall crisp control action is

z0(IR) = 44.975

The overall crisp action given by system is computed using the technique OWA with

w1 = 13/24, w2 = 11/24, a1 = 45.152, a2 = 44.975;

it results
z0 = 45.079

6. Conclusion

This paper presents fuzzy logic controllers of Mamdani type. After the standard Mamdani
FLC is explained, an its extension is prezented. Because it can work not only with crisp
data as inputs but, also, with intervals and/or linguistic terms its area of applications is very
large. As it is mentioned in (Liu et al., 2005), a very important domain of its application is
WEB shopping. Web users may use convenient interval inputs for online shopping as in the
previous example. The working with various implications in the same time and, moreover,
the possibility to aggregate the results given by these implications offer a strong base for more
accurate results of our system.

The system can be improved by adding new implications, by using other fuzzy matching
techniques or by other aggregate operators in order to obtain a overall crisp action from those
given, separately, by every implication.
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One of our future preoccupation is to extend this system by incorporating uncertainty about
the membership functions of fuzzy sets associated with linguistic terms. For this we intend to
work with interval type-2 fuzzy sets in accordance with the results from Mendel (2001; 2003;
2007).
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